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In this work we present a calculation of the hamiltonian variables solving the molec-
ular dynamics equations of motion for a system of nuclear matter kept at fixed tempera-
ture by using the Nosé-Hoover Thermostat and interacting via a semiclassical potential
depending on both positions and momenta.
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1. Introduction

At densities just below nuclear saturation density, there may be spatial
structures different from the uniformly distributed matter. In events like a super-
nova core collapse large quantities of neutrinos are produced. As they stream
out of the star, coherent scattering out of spatial density fluctuations of neu-
tron rich matter, known as pasta phases, can happen. These structures arise due
to the competition among intermediate-range attractive and long-range repulsive
forces [1,2]. Possible shapes include round nuclei, flat plates, rods, and spherical
voids [3].

In this work we are interested in solving the dynamical equations for a
nuclear system interacting via a realistic potential model depending not only on
positions, as usual, but on both positions and momenta and keeping the tem-
perature fixed using the Nosé-Hoover thermostat [4]. We mimic the Pauli princi-
ple in a fermionic nucler system by adding a momentum dependent term to the
potential [5]. In this way the characteristic phase space repulsion for fermionic
nucleons (protons and neutrons) can be included, restricting some of the avail-
able dynamical states for the individual particles. Solving this system allows for
realistic configurations of neutron rich plasmas in the NVT ensemble.
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2. Model Hamiltonian and method

We model a charge-neutral system with a fixed number of nucleons, A,
and electrons. The electrons provide a neutralizing background and are described
as an almost degenerate free Fermi gas, see below. The Hamiltonian under the
Nosé-Hoover method for the extended system in this case can be written as [4]

HNH =
A∑

i=1

P2
i

2mi
+ V (Ri j , Pi j ) + s2 p2

s

2Q
+ g

ln s

β
, (1)

where V (Ri j , Pi j ) is the potential which depends on both positions and momenta,
described below, s is the extended position variable, ps is the momentum conju-
gate to s, Q is the thermal inertial parameter corresponding to a coupling con-
stant between the system and the thermostat taking a value Q ∼ 106–108 MeV
(fm/c)2, we use g = 3A as a condition for generating the canonical ensemble
in the classical molecular dynamics simulations, ξ is the thermodynamic friction
coefficient and β is defined as β = 1/kBT .

The total potential energy of the system, V , consists of a sum of two-body
interactions

V = Vhad + VCoulomb + VPauli, (2)

where
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Here the distance between the particles in phase space is denoted by Ri j =
|Ri−R j |, Pi j = |Pi−P j | and τi represents the ith-nucleon isospin projection on
z-axis (τ = + 1 for protons and τ =−1 for neutrons). VCoulomb corresponds to
the screened Coulomb interaction. The screening length, λ, that results from the
slight polarization of the electron gas is arbitrarily set to λ = 10 fm as in previous
works [6–8]. VPauli is the Pauli potential that incorporates phase space repulsion
for fermions by means of the Kronecker deltas in spin and isospin [9]. This inter-
action model contains the characteristic intermediate-range attraction and short-
range repulsion of the nucleon-nucleon force through Vhad and allows to include
the fermionic nature of nucleons.
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The parameter set employed is displayed in table 1, adjusted to reproduce
the saturation density and binding energy per nucleon of symmetric nuclear mat-
ter and neutron matter, and the binding energy of finite nuclei at T = 1 MeV.

According to the hamiltonian equation (1) the equations of motion for each
nucleon yield

dRi

dt
= ∂ HNH

∂Pi
= Pi

mi
+ ∂V

∂Pi
, (6)
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with ξ ≡ sps

Q
We then study the solution of the equations of motion using different meth-

ods, like the exponential fitting [10], exponentially fitted symplectic method [11],
but we choose the Numerov type integrator algorithm [12,13] because it allows
the best accuracy, giving order 8 or 12 for this kind of hamiltonians.

The energy of the thermostat system is a conserved quantity

ENH =
A∑

i=1

P2
i

2m
+ V + 1

2
Qξ2 + gkT lns = K + V + Eξ + ET (10)

An effective temperature, that fluctuates around the desired initially set
temperature T , can be defined as

Teff = 2
3AkB

A∑

i=1

1
2

Pi · dRi

dt
. (11)

Table 1
Parameter set.

a (MeV) 133
b (MeV) −46.5
c (MeV) 11
d (MeV) 29
q0 (fm) 3
p0 (MeV/c) 120
Λ (fm2) 1.5
m (MeV) 939
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3. Simulation results

The simulations presented in this work were carried out with fixed baryonic
number density, nb, lepton fraction, Ye = ne

nb
and a fixed number of nucleons, A,

initially placed in a cubic box of side L = (A/nb)1/3 at random. To minimize
finite size effects we use periodic boundary conditions. Up to 1,000 particles are
taken in this work with typical thermalization times of order 105 fm/c.

As an example of typical low density conditions we consider nb=0.016 fm−3,
which is about a tenth of normal nuclear density, a temperature T =1 MeV and
a typical electron fraction for neutron rich matter Ye=0.2.

The energy of the system is conserved, according to equation (10), as can
be seen in the plot of energy per particle versus time in figure 1. The system
exhibits characteristic oscillations in the thermostat variables due to the value of
Q, that it is associated with the heat capacity of the system.

In figure 2 we plot the effective temperature for a system of A = 200 par-
ticles at nb = 0.016 fm−3, Ye = 0.2 and two values of Q. The upper curve
(dashed line) corresponds to Q = 106 MeV(fm/c)2 and the lower curve (solid line)
to Q = 108 MeV (fm/c)2. The temperature is set to T = 1 MeV for both curves.
The upper curve has been biased by adding an offset of 0.5 MeV for the sake
of clarity. By decreasing Q the temperature control is better but leads to rapid
oscillations in the energy, which must be carefully considered when studying the
dynamical response in energy modes of the system [14].

Figure 1. Energy per nucleon versus simulation time at T = 1 MeV, nb = 0.016 fm−3, and Ye = 0.2.
From top to bottom we plot ET , ENH, K , Eξ , V per nucleon. The initial time for the plot is set

once the system is thermalized.
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Figure 2. Effective temperature for a configuration of 200 particles at T = 1 MeV, nb = 0.016fm−3

and Ye = 0.2 for Q = 106 MeV(fm/c)2 and Q = 108 MeV(fm/c)2. See text for details.

Figure 3. Thermostat variable ln s versus simulation time at T =1 MeV, nb=0.016 fm−3, Ye=0.2
for Q = 106 MeV(fm/c)2 and Q = 108 MeV(fm/c)2. See text for details.

In the same way in figure 3 we plot the thermostat variable ln s for
the same cases as in figure 2 and again the dashed line corresponds to
Q=106 MeV(fm/c)2 and the solid line to Q = 108 MeV(fm/c)2. This illustrates the
slow time variation of ET for systems where Q is set bigger.
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In the numerical simulation the energy of the system may suffer a small
drift with time due to the accuracy of the algorithm used. We have checked that
the maximum relative extended energy error at time t , defined as

�E

E
=

∣∣∣∣
E(t) − E(0)

E(0)

∣∣∣∣ (12)

is �E
E = 10−4 for time length �t = 5.103 fm/c using timesteps dt = 0.025 fm/c and

Q = 106 MeV(fm/c)2. This error increases somewhat with timestep size. We use
timesteps in the range dt = 0.01 − 0.1 fm/c for our simulations in this work.

4. Conclusions

In this work we have employed molecular dynamics techniques to solve a
hamiltonian model with an interaction potential depending on both positions
and momenta. We have simulated neutron rich matter at a given density and
kept fixed the temperature by using the Nosé-Hoover thermostat and solved the
equations of motion using different integration methods. We find that a Nume-
rov type algorithm allows the best accuracy for this kind of hamiltonians giving
order 8 or 12.

We find that at the density of a tenth of nuclear saturation density, Ye = 0.2
and T = 1 MeV a clustered phase is formed. By changing the heat capacity of
the system in the range Q = 106–108 MeV(fm/c)2 thermalization of the system is
achieved in times of order 105 fm/c. The lower the heat capacity, Q, the better
the temperature control is. Induced oscillations in the thermostat variables must
be considered with further detail as they could jeopardize low energy excitation
modes.
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